metal-organic papers

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Zhi-Min Jin,^a* Zu-Guang Li,^b Bing Tu,^a Zhen-Lu Shen^b and Mao-Lin Hu^c

^aCollege of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China, ^bCollege of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China, and ^cDepartment of Chemistry, Wenzhou Normal College, Wenzhou, Zhejiang 325003, People's Republic of China

Correspondence e-mail: zhimin-j@tom.com

Key indicators

Single-crystal X-ray study T = 296 KMean σ (C–C) = 0.004 Å R factor = 0.029 wR factor = 0.058 Data-to-parameter ratio = 16.5

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

Aquadichlorobis(2-chloropyridine-*kN*)copper(II)

In the title compound, $[CuCl_2(C_5H_4ClN)_2(H_2O)]$, the Cu^{II} atom is coordinated by one water molecule, two Cl⁻ ions and two 2-chloropyridine molecules. The structure is built up *via* O-H···Cl hydrogen bonds and stablized by π - π stacking and Cl···Cl interactions.

Received 14 October 2005 Accepted 2 November 2005 Online 10 November 2005

Comment

There are numerous examples of chloropyridine-coordinated complexes in the literature (Wu *et al.*, 1997; Goher *et al.*, 1997, 2003). We present here the structure of the title compound, (I), which has been synthesized for the first time.

In compound (I), the Cu^{II} atom is coordinated by N atoms from two 2-chloropyridine molecules, two Cl atoms and one water molecule (Fig. 1). The complex molecules are connected by $O-H\cdots$ Cl hydrogen bonds (Table 2 and Fig. 2). In addition, a π - π stacking interaction between neighbouring pyridine rings plays a subordinate role in stabilizing the structure; the centroid(x, y, z)-centroid(1 - x, 1 - y, 1 - z) distance is 3.727 (4) Å.

Figure 1

The molecular structure of (I), with the atom-labelling scheme. Displacement ellipsoids are drawn at the 35% probability level. Unlabelled atoms are related to labelled atoms by the symmetry operator $(x, -y + \frac{3}{2}, z)$.

O 2005 International Union of Crystallography Printed in Great Britain – all rights reserved

Figure 2

A view of the crystal packing of (I) along the c axis. Hydrogen bonds are drawn as dashed lines.

The coordination geometry around copper is square pyramidal, with a water O atom located at the apex. Compound (I) has a mirror plane passing through atoms Cu, O, Cl2 and Cl3.

It is noteworthy that there are Cl···Cl contacts (Koellner *et al.*, 1998), with Cl1···Cl3(x, y, z + 1) = 3.412 (4) Å and Cl1···Cl3(x, $-y + \frac{3}{2}$, z + 1) = 3.412 (4) Å, and these are shorter than the van der Waals distance of 3.6 Å (Gafner *et al.*, 1962; Sakurai *et al.*, 1963).

Experimental

CuCl₂·2H₂O and 2-chloropyridine, in a molar ratio of 1:2, were mixed and dissolved in sufficient ethanol by heating to 373 K, to give a clear solution. After slow cooling of the reaction mixture to room temperature, crystals of (I) were formed. These were collected and washed with distilled water.

Crystal data

$C_{\rm H}C_{\rm H}(C_{\rm H}L_{\rm C}(N))$ (II O)]	Ma Var nadiation
$CuCl_2(C_5\Pi_4CIN)_2(\Pi_2O)$	No Ka radiation
$M_r = 379.55$	Cell parameters from 31
Orthorhombic, Pnma	reflections
a = 14.005 (3) Å	$\theta = 3.7 - 13.2^{\circ}$
b = 15.339 (3) Å	$\mu = 2.34 \text{ mm}^{-1}$
c = 6.437 (1) Å	T = 296 (2) K
$V = 1382.8 (5) \text{ Å}^3$	Prism, blue
Z = 4	$0.44 \times 0.44 \times 0.26 \text{ mm}$
$D_x = 1.823 \text{ Mg m}^{-3}$	
Data collection	
Siemens P4 diffractometer	$R_{\rm int} = 0.018$
w scans	$\theta_{\rm max} = 27.0^{\circ}$
Absorption correction: ψ scan	$h = 0 \rightarrow 17$
(North et al., 1968)	$k = -1 \rightarrow 19$
$T_{\min} = 0.372, \ T_{\max} = 0.544$	$l = 0 \rightarrow 8$
1993 measured reflections	3 standard reflections
1566 independent reflections	every 97 reflections
1117 reflections with $I > 2\sigma(I)$	intensity decay: 4.4%

Refinement

Refinement on F^2	и
$R[F^2 > 2\sigma(F^2)] = 0.029$	
$vR(F^2) = 0.058$	(
S = 0.97	Δ
566 reflections	Δ
5 parameters	E
I atoms treated by a mixture of	
independent and constrained	E
refinement	

 $w = 1/[\sigma^{2}(F_{o}^{2}) + (0.0222P)^{2}]$ where $P = (F_{o}^{2} + 2F_{c}^{2})/3$ $(\Delta/\sigma)_{max} = 0.001$ $\Delta\rho_{max} = 0.30$ e Å⁻³ $\Delta\rho_{min} = -0.35$ e Å⁻³ Extinction correction: *SHELXL97* (Sheldrick, 1997) Extinction coefficient: 0.0121 (5)

Table 1Selected geometric parameters (Å, °).

Cu-N	2.0318 (18)	Cl1-C5	1.715 (3)
Cu-Cl3	2.2720 (11)	N-C5	1.329 (3)
Cu-Cl2	2.2749 (11)	N-C1	1.339 (3)
Cu-O	2.491 (3)		
N ⁱ -Cu-N	174.58 (12)	N-Cu-O	92.68 (6)
N-Cu-Cl3	89.29 (6)	Cl3-Cu-O	96.35 (9)
N-Cu-Cl2	90.65 (6)	Cl2-Cu-O	84.92 (9)
Cl3-Cu-Cl2	178.74 (4)		

Symmetry code: (i) $x, -y + \frac{3}{2}, z$.

Table 2	
Hydrogen-bond geometry (Å, °).	

$D - H \cdots A$	<i>D</i> -H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$D - H0A \cdots Cl2^{ii}$ $D - H0B \cdots Cl3^{iii}$	0.820(10) 0.822(10)	2.430 (12) 2.747 (19)	3.250 (3) 3.524 (3)	178 (5) 158 (5)
		1 1		

Symmetry codes: (ii) x, y, z - 1; (iii) $x + \frac{1}{2}, y, -z + \frac{1}{2}$.

The H atoms of the water molecule were located in a difference Fourier map and refined isotropically. Other H atoms were treated as riding atoms, with C-H = 0.93 Å and $U_{iso}(H) = 1.2U_{eq}(C)$.

Data collection: *XSCANS* (Siemens, 1994); cell refinement: *XSCANS*; data reduction: *SHELXTL* (Bruker, 1998); program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *SHELXTL*; software used to prepare material for publication: *SHELXTL*.

This work was supported by the National Natural Science Foundation of China (grant No. 30500339).

References

- Bruker (1998). SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.
- Gafner, G. & Herbstein, F. H. (1962). Acta Cryst. 15, 1081-1085.
- Goher, M. A. S. & Mautner, F. A. (1997). Polyhedron, 17, 1561–1570.
- Goher, M. A. S., Mautner, F. A., Abu-Youssef, M. A. M., Hafez, A. K., Badr, A. M. A. & Gspan, C. (2003). *Polyhedron*, 22, 3137–3143.
- Koellner, G., Kazimierczuk, Z., Steriner, T. & Kaminski, J. (1998). J. Mol. Struct. 444, 21–27.
- North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351– 359.
- Sakurai, T., Sundaralingam, M. & Jeffrey, G. A. (1963). Acta Cryst. 16, 354– 360.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
- Siemens (1994). XSCANS. Version 2.10. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
- Wu, C. C., Hunt, S. A., Gantzel, P. K., Gütlich, P. & Hendrickson, D. N. (1997). *Inorg. Chem.* 36, 4717–4733.